The generator matrix

 1  0  0  0  1  1  1  6  1  1  1  1  1  1 2X  1  3  1 2X+6 2X+6  1  1  1  1  1  1  3  1  1  1  1  1 2X  1 X+6 2X+3  1  1  1  1  1  1  6 2X  1  X  1  1  1 2X+3  1  1
 0  1  0  0  6  1  4  1  X X+3 2X+8 X+2 X+1 2X+4  1 2X+1  1 2X  1 2X  5 X+4 2X+8 X+2 X+5  6  1 2X+2  4  7  6 X+2  1  8 2X  1 2X+7 X+6 X+4 2X+4 2X  3  1  1 2X+1  3 X+1  X  4  1 X+4  0
 0  0  1  0 2X+7 2X+1 X+5 2X+4 X+1 X+8 X+3 X+4 2X  5  4 2X+1 X+6  8 2X+8  1 X+2 X+4 2X+3 2X  8 X+3  2  8 X+6  3 X+4 2X+4 2X+3 X+1  1 X+8 2X  5 2X+5 X+8 2X+6  7  7 X+8 X+3  1  3  5 2X+3 X+7  5 X+3
 0  0  0  1 2X+5  3 2X+2 2X+2  1 X+3 X+7 2X+3  6 X+1  7  8  8  1  0 X+7  7 2X+1 X+5  X 2X+5  2  4 2X X+5 2X+7  0  4 2X+4 2X+8 2X+2 2X+8 2X+8  8 X+7 X+8 X+4  5  3 X+8 2X+1  5 X+3 X+5 2X+6  X 2X  3

generates a code of length 52 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 93.

Homogenous weight enumerator: w(x)=1x^0+420x^93+1056x^94+3204x^95+5962x^96+9696x^97+14250x^98+19858x^99+26946x^100+37590x^101+48986x^102+54402x^103+59430x^104+65626x^105+58842x^106+47124x^107+35086x^108+20652x^109+13068x^110+5800x^111+2268x^112+690x^113+148x^114+78x^115+78x^116+96x^117+48x^118+12x^119+24x^120

The gray image is a code over GF(3) with n=468, k=12 and d=279.
This code was found by Heurico 1.16 in 417 seconds.